TS Optics Photoline 80/480 Information (3.2" Refractor)

Motivation | Look | Visited Sky Objects | First Experiences | Issues and Solutions | First Conclusions | Links | Appendix: Data

in progress

On this page I provide some information about my TS-Optics PHOTOLINE 80 mm f/6 FPL53 Triplet APO Refractor - 2.5" RAP Focuser (received on November 20, 2024); the focal length is 480 mm. For simplicity, I will mostly call this refracor (TS-Optics) TLAPO804. I would like to use this telescope for quick-and-dirty visual observations (on the AZ Pronto mount).

See the appendix for the data.

 

Motivation and Purchase...

Refractors are praised again and again for their sharp and constrasty image, but also criticized because of their color aberrations. Only refractors with very expensive glass seem to be free of color aberrations. And not always seems too be "ED" inside where there is "ED" written on the tube... Although I have no experiences with refractors so far, the praises that I have read have enticed me again and again to purchase one. Every time I found a cheaper refractor on the Internet, I called my astronomy dealer and asked him for his opinion on the respective device. And he advised against it again and again because of the strong color aberrations, so that I for a long time I never purchased a refractor. But at the beginning of September 2018 at the AME2018 astronomy trade fair in Villingen-Schwenningen, I bought one after all, the Omegon refractor PS 72/432 ED (f/6). In July 2020, I then bought a second, larger refractor (TLAPO 102/715, f/7 from TS-Optics, or TLAPO1027 for short), among other because I was not as satisfied with the PS 72/432 as I would have liked. In comparison with the PS 72/432, this three-lens scope was clearly superior. However, as I never had a decent mount for this heavier refractor and therefore did not use it much, I finally sold it in October 2024.

When a starfriend discussed his "refractor situation" with us in November 2024 - should he "upgrade" his 80/480 three-lens tube or buy a ready-made tube with the same optics - the dissatisfaction with my PS 72/432 came up again. And so, quite spontaneously, but with the advice of my wife, I ordered the same refractor that my starfriend then bought (he a second-hand version, I a demonstration model), the TS-Optics TLAPO804. And it arrived just one day after my order!

But the first problems became apparent on the very first day: the focusing had play and we did not like the star shapes. More on this below! So it may well be that this encounter will only be a short episode...

 

Look

Unpacking

Outer box (right) with box for transport bad

Outer box opened

Inner box revealed

Inner box

Inner box opened - another box

Innermost box pulled outwards

Innermost box remove and opened - telescope tube visible

Telescope tube in the innermost box

Ditto, foam removed

Telescope Tube

Telescope tube taken out

Telescope tube

Ditto

 

Ditto

 

Details

Telescope tube from the front

 

Focuser from the side

Telescope tube from the rear

Telescope tube from the rear

Telescope tube from the rear, 1.25" adapter removed

 

Comparison with Omegon PS 72/432

Dew shield not extended for the TLAPO804; the PS 72/432 has a fixed dew shield

Refractor on AZ Pronto Mount (with 2" Accessories)

With Omegon 2" star diagonal With TS-Optics 2" star diagonal With Omegon 2"/1,25" Amici Prism

With 2" and 1.25" Accessories

2" Accessories only

With TS-Optics 2" star diagonal, 35 mm eyepiece With TS-Optics 2" star diagonal, 35 mm eyepiece With Omegon 2" star diagonal, 26 mm eyepiece

1.25" Eypieces at 2" Accessories

With Omegon 2" star diagonal With TS-Optics 2" star diagonal With Omegon 2"/1.25" Amici prism

1.25" Accesories only

With Lacerta 1.25" star diagonal With Baader 1.25" Amici prism  

Carrying Case for TLAPO804

The TLAPO804 does not come with a carrying case. Therefore, I ordered a case from TS-Optics for the tube (but only after having ordered the refractor...). It arrived on the same day as the tube, so I was able to try it out straight away.

The best fit!

 

Visited Sky Objects

in preparation

...

 

Issues and Solutions

in preparation

...

 

First Conclusions

in preparation

....

 

Links

 


Appendix: Data for TS-Optics TLAPO804 Refractor

Technical Data

Telescope: Omegon TLAP804
Optical Design Refractor (Triplet)
Primary Mirror Diameter 80 mm
Focal Length, Focal Ratio 480 mm, f/6
Resolving Power (arc secs) 1.45"
Limiting Visual Stellar Magnitude about 11.5 mag
Light Gathering Power 130.6
Maximum Practical Visual Power 160 x
Optical Tube Dimensions (diam. x length) 8.9/10.3 cm x 37.5 cm (transport size)
Net Weight Basis n.a.
Net Weight Optical Tube 3.14 kg with pipe clamps
Net Weight Complete n.a.

Dark Blue: Telescopes that I still own; italic and dark red: telescopes that I owned; black: for comparison; *) own measurement

See also the table of data for all of my telescopes (and a few more...)

Observation-Relevant Data (in Comparison with PS72, ST120, TLAPO1027, and PDS150 Newton Tube)

Telescope

Focal
Length
(mm)

Aperture
(mm)
Focal
Ratio
Light
Gathering
Power
Maximum+
Minimum*
Maximum*
Minimum+
Usable Magnification
Usable Focal Length
of Eyepiece (mm)
Factor/Exit Pupil (mm) >
Manuf.
1.5
2
6.5
7
6.5
7
1.5
2
PS 72/432
432
72
6
106
144
108
144
11.08
10.29
39.0
42.0
4.0
3.0
ST120
600
120
5
290
180
240
18.46
17.14
32.5
35.0
3.3
2.5
TLAPO804
480
80
6
130.6
120 160 12.31 11.43
39.0
42.0
4.0
3.0
TLAPO1027
714
102
7
212.3
153
204
15.69
14.57
45.5
49.0
4.7
3.5
Explorer PDS150/Dobson 6"
750
150
5
459
225
300
23.08
21.43
32.5
35.0
3.3
2.5

*) Calculated for an exit pupil of 6.5 mm and 7 mm
+) Factor 1.5 or 2 for Dobsonian/Newtonian telescopes; in general, the lower value of 1.5 is used for Newtonian telescopes; if the manufacturer specified a different magnification, it is also listed (some manufacturer provide considerably higher numbers...).

Visual Power (Magnification) and Other Data for Different Focal Lengths of Eyepieces (Mostly My Current Eyepieces)

Note: These tables include the StarTravel 120 refractor, a TSWA32 eyepiece (2", 32 mm focal length, 70° viewing angle) that I borrowed together with the StarTravel 120, a 18 mm eyepiece (2", 82° viewing angle), a 38 mm eyepiece (2", 70° viewing angle), and a 56 mm eyepiece (2", 52° viewing angle).

Magnification
Focal Length of Eyepiece (mm)
 
Telescope
Focal Length
of Telescope
(mm)
4
7
10
16
18
24
26
32
32
35
38
40
56
   
PS 72/432
432
108.00
61.71
43.20
27.00
24.00
18.00
16.62
13.50
13.50
12.34
11.37
10.80
7.71
   
ST120
600
150.00
85.71
60.00
37.50
33.33
25.00
23.08
18.75
18.75
17.14
15.79
15.00
10.71
   
TLAPO804
480
125.00
68.57
48.00
30.00
26.67
20.00
18.46
15.00
15.00
13.71
12.63
12.00
8.57
   
TLAPO1027
714
178.50
102.00
71.40
44.63
39.67
29.75
27.46
22.31
22.31
20.40
18.79
17.85
12.75
   
150PDS
750
187.50
107.14
75.00
46.88
41.67
31.25
28.85
23.44
23.44
21.43
19.74
18.75
13.39
   
SM127
1500
375.00
214.29
150.00
93.75
---
62.50
---
46.88
---
---
---
---
---
   
SM102
1300
325.00
185.71
130.00
81.25
---
54.17
---
40.63
---
---
---
---
---
   
C5
1250
312.50
178.57
125.00
78.13
---
52.08
---
39.06
39.06
35.71
32.89
31.25
22.32
   
C5 (Red.)
787.5
196.88
112.50
78.75
49.22
---
32.81
---
24.61
---
---
---
---
---
   
C8
2032
508.00
290.29
203.20
127.00
112.89
84.67
78.15
63.50
63.50
58.06
53.47
50.80
36.29
C8 (Red.)
1280
320.00
182.86
128.00
80.00
---
53.33
---
40.00
---
---
---
---
---
 
True Field of View (°)
Focal Length of Eyepiece (mm)
Camera
Apparent FOV (°) >
82
82
72
82
82
65
70
52
70
69
70
68
52
ZWO
Atik
Telescope
Focal Length
of Telescope
(mm)
4
7
10
16
18
24
26
32
32
35
38
40
56
ASI294
Infinity
PS 72/432
432
0.76
1.33
1.67
3.04
3.42
3.61
4.21
3.85
5.19
5.59
6.16
6.30
6.74
2.54° x 1.73° 1.19° x 0.89°
ST120
600
0.55
0.96
1.20
2.19
2.46
2.60
3.03
2.77
3.73
4.03
4.43
4.53
4.85
   
TLAPO804
480
0.68
1.20
1.50
2.73
3.08
3.25
3.79
3.47
4.67
5.03
5.54
5.67
6.07
   
TLAPO1027
714
0.46
0.80
0.91
1.84
2.07
2.18
2.55
2.33
3.14
3.38
3.73
3.92
4.08
1.54° x 1.05° 0.72° x 0.54°
150PDS
750
0.44
0.77
0.96
1.75
1.97
2.08
2.43
2.22
2.99
3.22
3.55
3.63
3.88
   
SM127
1500
0.22
0.38
0.48
0.87
---
1.04
---
1.11
---
---
---
---
---
   
SM102
1300
0.25
0.44
0.55
1.01
---
1.20
---
1.28
---
---
---
---
---
   
C5
1250
0.26
0.46
0.58
1.05
---
1.25
---
1.33
1.79
1.93
2.13
2.18
2.33
0.88° x 0.60° 0.41° x 0.31°
C5 (Red.)
787.5
0.42
0.73
0.91
1.67
---
1.98
---
2.11
---
---
---
---
---
1.40° x 0.95° 0.65° x 0.49°
C8
2032
0.16
0.28
0.35
0.65
0.73
0.77
0.90
0.82
1.10
1.19
1.31
1.34
1.43
0.54° x 0.37° 0.25° x 0.19°
C8 (Red.)
1280
0.26
0.45
0.63
1.03
---
1.22
---
1.30
---
---
---
---
---
0.86° x 0.58° 0.4° x 0.3°
 
Exit Pupil (mm)
Focal Length of Eyepiece (mm)
 
Telescope
Focal Ratio
4
7
10
16
18
24
26
32
32
35
38
40
56
   
PS 72/432
6
0.67
1.17
1.67
2.67
3.00
4.00
4.33
5.33
5.33
5.83
6.33
6.67
9.33
   
ST120
5
0.80
1.40
2.00
3.20
3.60
4.80
5.20
6.40
6.40
7.00
7.60
8.00
11.20
   
TLAPO804
6
0.67
1.17
1.67
2.67
3.00
4.00
4.33
5.33
5.33
5.83
6.33
6.67
9.33
   
TLAPO1027
7
0.57
1.00
1.43
2.29
2.57
3.43
3.71
4.57
4.57
5.00
5.43
5.71
8.00
150PDS
5
0.80
1.40
2.00
3.20
3.60
4.80
5.20
6.40
6.40
7.00
7.60
8.00
11.20
   
SM127
11.81
0.34
0.59
0.85
1.35
---
2.03
---
2.71
---
---
---
---
---
SM102
12.75
0.31
0.55
0.78
1.26
---
1.88
---
2.51
---
---
---
---
---
   
C5
10
0.40
0.70
1.00
1.60
---
2.40
---
3.20
3.20
3.50
3.80
4.00
5.60
   
C5 (Red.)
6.3
0.63
1.11
1.59
2.54
---
3.81
---
5.08
---
---
---
---
---
   
C8
10
0.40
0.70
1.00
1.60
1.80
2.40
2.60
3.20
3.20
3.50
3.80
4.00
5.60
   
C8 (Red.)
6.3
0.63
1.11
1.59
2.54
---
3.81
---
5.08
---
---
---
---
---
   

Blue: Equipment borrowed for comparison purposes; gray: sold equipment; italic: 2" eyepieces

Magnification: Yellow: low (30-50 x); magenta: medium (80-100 x); violet: high (150-200 x - and more); red: beyond maximum usable magnification.
Exit pupil: Values in magenta cells are either too small (< 1 mm) or too large (> 6.4/7 mm); yellow background: best for galaxies (about 2-3 mm).

Recommendations for the Focal Lengths of Eyepieces for TLAPO804 (Following My Recommendations and Those of Others)

Criteria Exit
Pupil
Focal Length of Eyepiece
Category Application Area
from...to
Calculated
On the Market
Examples
Existing
Maximum FOV Search
7
10
42-60
40-56*
40...56*
40
Minimum Magnification / Large FOV Overview, large-area nebulae
4.5
6.5
27-39
28-38*
28...38*
26, 35
Normal Magnification Large-area, faint nebulae; nebulae, open star clusters
3.5
4
21-24
20-25*
20...25
24, 26
Best for many objects, e.g. for most galaxies, and mid-size DSO
2
3
12-18
12-18*
12, 15, 16, 18
16
Maximum Magnification / Maximum Resolution "Normal" upper magnification limit; globular star clusters
1
1.5
6-9
6-9
6, 7, 9
7, 10
Maximum perceptibility of small, low-contrast details; planetary nebulae, small galaxies;
maximum magnification for moon and planets
0.6
0.8
3.5-5
3.5-5
4
4
Separation of narrow double stars, small planetary nebulae;
perception of faintest details
0.4
0.5
2.4-3
2.5-3
3
---

*) Partly available as 2" eyepiece; **) typically no suitable 1,25" eyepieces available; problems with viewing at 40 mm; italic: not possible; red: magnification too high; blue: commercial focal lengths

 

An den Anfang   Homepage  

gerd (at) waloszek (dot) de

About me
made by walodesign on a mac!
21.11.2024